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Abstract

The paper concerns the definition and performance evaluation of a new multi-hop routing protocol for

underwater wireless sensor networks. Our solution, termed CARP for Channel-aware Routing Protocol,

exploits link quality information for data forwarding, in that nodes are selected as relays if they exhibit

recent history of successful transmissions to their neighbors. CARP avoids loops and can successfully route

around connectivity voids and shadow zones by using simple topology information, such as hop count. The

protocol is also designed to take advantage of power control for selecting robust links. The performance

of CARP has been compared with that of two other protocols for underwater routing, namely, the Focused

Beam Routing (FBR) and a flooding-based solution (EFlood). Metrics of interest include packet delivery

ratio, end-to-end packet latency and energy consumption, which have been investigated through ns2-based

simulations and experiments at sea. The in-field trials have been conducted at two European locations,

namely, a Norwegian fjord and the Mediterranean Sea. The tests in the Mediterranean Sea have been

performed jointly with the NATO Science and Technology Organization Centre for Maritime Research

and Experimentation (STO CMRE), under a collaboration agreement between the University of Roma and

CMRE.1 Our results show that CARP robust mechanism for relay selection doubles the packet delivery

ratio of FBR and EFlood. CARP also outperforms FBR and EFlood in terms of energy consumption, and

delivers packets significantly faster than FBR.

Keywords: Underwater wireless acoustic networks, Cross-layer design, Channel-aware communications,

In-field experimentation.

1 We gratefully acknowledge CMRE for their invaluable feedback and for providing expertise and logistics during experimen-

tation.
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1. Introduction

Underwater wireless sensor networks (UWSNs) are an enabling technology for many autonomous sys-

tems that find application to science, security, and industry. The diversity of aquatic applications ranges

from environmental monitoring, pollution control, prediction of and reaction to natural disasters, eco-system

analysis, surveillance for defense applications and port safety, off-shore oil and gas industry, aquaculture,

geological and oceanographic science, marine, biology and archaeology [1, 2]. Most of these applications

are currently served by piecemeal networking infrastructures, mostly based on costly underwater cabling or

limited, single hop acoustic communications. Recently, however, research on UWSNs has focused on the

design of more flexible and performant networks that can cover larger areas of the submarine environment.

This is made possible by deploying a variety of sensor nodes capable to transmit their data wirelessly to col-

lections points (sinks) through multi-hop communications. Sinks may then forward the received information

to onshore control stations, usually via RF transmissions.

Challenges to the design of communication protocols for the new, multi-hop UWSN architecture come

from the very specific environment where they operate. Long propagation delays, low bandwidth, sound

speed variability, slow power signal attenuation, and the rapidly changing conditions of the underwater

channel affect UWSNs at all levels of their design and deployment. In particular, MAC and routing pro-

tocols face new challenges with respect to their terrestrial counterparts, in that channel access mechanisms

and routing techniques are highly affected by the link quality whose variations are less predictable and man-

ageable than that of wireless radio links. Recent trends in protocol design show that cross-layer techniques

can impact protocol performance positively, especially in networks with limited resources and/or deployed

in challenging environments, like UWSNs [3]. An example of cross-layer routing is provided by the Fo-

cused Beam Routing (FBR) protocol, proposed by Jornet et al. in [4]. Control packets (RTS and CTS as

in CSMA/CA-like channel access) are used to reserve the channel, a typical MAC function. The control

packets, however, carry also node location information that is used for routing purposes, namely, to select

as next-hop relay the node that is closest to the sink. The use of short packets for channel access and relay

selection results particularly effective for routing in the challenged UWSNs environment. This is because

their transmissions are relatively fast even at the low rates of acoustic modems, and because they are less

subject to bit errors and interferences. However, in the quickly varying conditions of the underwater chan-

nel, the fact that two nodes can exchange short control packets correctly, may not be sufficient to guarantee

that longer data packets are also going to be safely delivered. In other words, protocols like FBR that do not
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consider link quality information as a criterion for relay selection are still heavily prone to bit errors. This

is a problem that affects many other cross-layer solutions (see Section 2).

In this paper, we present a new distributed cross-layer Channel-aware Routing Protocol (CARP) for

UWSNs for multi-hop delivery of data to the sink. While still reaping the benefits of cross-layer design

(short packets for robust channel access and relay selection), CARP obviates to the drawbacks of other

solutions in that link quality is explicitly taken into account for selecting the next-hop node on a route

to the sink. History of successful transmissions to neighboring nodes is maintained and used in relay

selection. Other characteristics that make CARP relay selection particularly suitable for implementing

multi-hop routing in UWSNs include the following: (i) The use of simple topology information (hop count)

for routing around connectivity holes and shadow zones, thus avoiding the well-known pitfalls of geographic

routing; (ii) considering residual energy and buffer space, and (iii) taking advantage of power control, if

available, for selecting transmission powers so that shorter control packets experience a similar Packet

Error Rate (PER) of longer data packets.

The performance of CARP has been evaluated through simulations and through trials at sea, measuring

metrics such as packet delivery ratio, packet latency and energy consumption. Simulations have been per-

formed by implementing CARP in SUNSET [5], our extension to the ns-2 simulator specifically designed

for underwater networking. We used the Bellhop ray tracer [6] and historical environmental data for more

realistic modeling of the underwater acoustic channel. Through Bellhop we have been able to compute the

frequency-dependent acoustic path loss of each source-destination pair at a given location, as well as the

spatially-varying interference induced by all active nodes. The performance of CARP has been compared to

that of FBR [4] and of an enhanced version of flooding, called EFlood, where nodes wait for a random time

before forwarding the packet (this desynchronizes node transmissions and reduces interferences, improving

the performance of common flooding). We consider networks with desirable size (20 nodes), varying traffic

and packet size. Experiments at sea have been performed at two European locations, namely, a Norwegian

fjord and the Mediterranean Sea, in multi-hop network of realistic size (6 and 8 nodes, respectively). In the

trials, the performance of CARP has been compared to that of EFlood. Both simulations and in-field tests

show that CARP is an effective solution for transmitting packets through time-varying channels. The pro-

tocol is capable of routing around connectivity holes and shadow zones, and of maintaining a high packet

delivery ratio for increasing traffic, irrespective of the ratio between transmission and propagation times.

Our simulation results show that CARP outperforms both FBR and EFlood with respect to packet deliv-
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ery ratio, being always able to deliver 80% of the packets, independently of the wide variety of traffic and

data packet sizes we considered, in simulations and at sea. At higher traffic FBR and EFlood show instead

decreasing performance: EFlood can deliver only up to 35% of the generated packets, and FBR only up

to 40%. CARP also consistently outperforms EFlood in trials at sea. The energy saved by CARP is up to

100% than that of FBR, and up to 400% (simulations) and 63% (in-field) than the energy saved by EFlood.

In terms of end-to-end packet latency, our simulations show that both CARP and FBR incur longer delays

with respect to EFlood, since they both use an handshaking mechanism for channel reservation. CARP,

however, significantly outperforms FBR, proving suitable for actual underwater applications.

The rest of the paper is organized as follows. Previous work on underwater multi-hop routing is sum-

marized in Section 2. In Section 3 we describe CARP in detail. Section 4 illustrates experimental results.

Finally, Section 5 concludes the paper.

2. Related Works

Protocols for underwater communications have recently received noticeable attention [7, 8, 9, 10].

Among the first protocols to tackle the problem of finding routes from an underwater sensor node to the

sink is the Vector-Based Forwarding (VBF) protocol of Xie et al. [11]. Nodes forward packets by broad-

casting them to nodes residing in a constrained “pipe” of given width in the direction of the sink. The

pipe surrounds a virtual line (a vector) between the packet source node and the sink. The efficiency of

the protocol, especially its throughput, depends on the critical determination of the radius of the pipe: If

the radius is too small, few or no relays can be found in the pipe; if it is too large, too many nodes might

receive the packet, whose retransmission increases interference, overhead, and duplicate packets. VBF has

been enhanced in [12] and [13]. Nicolaous et al. define an hop-by-hop version of VBF, HH-VBF [12],

introducing multiple vectors from each relay to the sink for increasing the probability to find a relay in the

pipe, especially in sparse networks. The LE-VBF protocol of Xiao et al. extends VBF to include energy

information in the relay selection mechanism, so to extend the network lifetime [13]. The performance of

both protocols depends on the correct determination of the radius of the forwarding pipe, and suffers from

high overhead. A different flooding-based geographic solution is investigated by Shin et al. through their

Directional Flooding-based Routing (DFR) [14]. Data packets are broadcast by each node S to all its neigh-

bors. Based on directional information, namely, by the angle SFD between the sender S, the forwarder F

and the destination D (i.e., the sink), a node decides whether to forward the packet or not. The decision is
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made by comparing the angle SFD with a reference angle carried by the packet. The varying conditions of

the underwater channel are addressed by changing the reference angle on a hop-by-hop basis according to

the link quality: The better the latter, the smaller the flooding zone. Since determining geographic informa-

tion underwater can be difficult, or could require high cost/overhead, some protocols use partial geographic

information. This kind of information, such as depth (distance from the surface), can be easily determined

with high accuracy [15]. This is the case of DBR, the Depth Based Routing protocol, presented by Yan et

al. [16]. Each node that receives a data packet forwards it only if its depth is less than that of the sender.

Before forwarding the data packet, a node holds the packet for a time that depends on the difference between

its own depth and that of the sender. In particular, the larger the vertical distance, the smaller the holding

time, so that nodes that are closer to the surface (i.e., to the sink) are the first to forward the data packet.

While holding, a node listens to the transmissions on the channel. If it overhears that the packet that it is

about to broadcast is transmitted by another node, the node drops the packet. Protocols such as HydroCast

(Lee et al. [17]) and VAPR (Noh et al. [18]) also base forwarding decisions based on a node depth. The

idea of these solutions is similar to that of DBR: A node will forward a packet only if other nodes closer

to the sink cannot send it. HydroCast tries to find a set of possible relays that maximize “expected packet

advance” [19], while limiting the number of forwarding nodes to reduce redundant transmissions, packet

collisions and therefore co-channel interference and the impact of hidden terminal phenomena. Recovery

route strategies are provided where alternative routes are discovered through a limited hop search of a 2D

surface of a convex hull around a void zone. VAPR uses the same forwarding set selection algorithm of

HydroCast. Nodes know their next-hop neighbor towards the sink thanks to the surface reachability in-

formation flooded starting from the sink via periodic beaconing. Using the created directional trails the

protocol performs a local opportunistic directional flooding to deliver the data. Simulation results show

that VAPR outperforms HydroCast, DBR and a generic routing protocol where routes are only based on

the distance in hops from the sink. Depth as expressed by hop count (distance from the sink) is also the

main criteria for relay selection in the tier-based underwater acoustic routing protocol proposed by Kuo and

Melodia [20]. Next hop relays are selected and transmission power is set with the aim of reducing energy

consumption subject to requirements on end-to-end PER and delay. Toso et al. propose a modification of

the Dynamic Source Routing (DSR) protocol [21] that makes it suitable for UWSNs [22]. The protocol,

termed SUN for Source routing for Underwater Networks, determines routes to the sink based on the hop

distance of a node from the sink and on the Signal to Noise Ratio (SNR) of links in the route. Choices are
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made according to the actual application and network scenario.

Relevant contributions to the cross-layer approach to data forwarding, proven effective for multi-hop

wireless radio networks [23], have been made for UWSNs by Pompili et al. [24], Jornet at al. [4] and by

Pompili and Akyildiz [25]. Pompili et al. present two distributed protocols for delay-insensitive and delay-

sensitive applications, respectively, where each node jointly select its best next hop, the transmitted power,

and the forward error correction (FEC) rate for each packet in a cross-layer fashion [24]. The objective

is that of minimizing energy consumption, taking the condition of the underwater channel and application

requirements into account. More recently, Pompili and Akyildiz explore the cross-layer interactions of key

underwater functionalities such as modulation, FEC, MAC and routing to develop a communication proto-

col for the efficient and fair share of the bandwidth-limited high-delay underwater acoustic medium [25].

In particular, their attention is to devise methods that minimize delays, and therefore result in a protocol

suitable for underwater multimedia communications. Jornet at al. introduce the Focused Beam Routing

(FBR) [4]. Nodes know their own location and the location of the sink (geographic routing). When a node

has a data packet to send, it first transmits a control packet (e.g., a request-to-send, RTS, packet) and waits

for replies from nodes in a cone centered on the line between itself and the sink. Each node that receives an

RTS packets replies with a clear-to-send (CTS) packet containing its position along with other information.

Among all nodes that reply, the closer to the sink is chosen as next-hop relay. FBR also assumes that nodes

can choose their transmission power within a set of different power levels, P1 through Pn. If there are no

nodes within the hearing range at power Pi, the transmitter increases its power to Pi+1, and tries again. The

process continues until a relay is found or the packet is discarded. (Further details on the cited protocols

and on additional ones can be found in recent surveys on the subject [8, 9, 10].)

Whether using a cross-layer approach to routing or not, the cited solutions focus on energy consump-

tion and delay minimization devising methods that, while considering many of the characteristics of the

underwater channel, do not take fully into account the quality of the channel and its variation in time. Our

proposed protocol, CARP, chooses next-hop relays depending on recent information on link quality, achiev-

ing packet delivery ratios and delays that are consistently better than those obtained by previous solutions.

3. CARP: Protocol Description

We start by defining the operation performed at network initialization and then we describe data for-

warding.
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3.1. Network initialization and hop count setting

Every node x stores its hop distance from the sink in the variable HC(x), initially set to a very large

value (higher than the longest possible route in the network). The sink HC variable is set to 0. At the

start of network operations the sink floods a HELLO packet throughout the network. This packet carries the

unique ID (src) of the node forwarding it (initially, it will be the sink ID) and the hop count HC value:

HELLO = 〈src,HC〉. Upon receiving a HELLO packet a node x checks whether its hop count variable HC(x)

is greater than the hop count HC carried by the packet plus 1. If it is, the node updates its HC(x) to the value

in the HELLO packet plus 1 and retransmits it updating the packet hop count field to HC(x); otherwise, the

node drops the packet. When this set up phase has finished each node knows its hop distance from the sink.

3.2. Data forwarding

When a node x has one or more data packets to forward it sends a broadcast control packet, called PING,

searching for a suitable relay in its neighborhood. The PING packet carries the following information:

PING = 〈src,HC, pid, Lpkt〉. The field src is node x unique identifier; HC is the hop count value of x; pid is

the unique identifier of the current PING packet (the pair 〈src, pid〉 identifies uniquely each PING packet);

Lpkt is a list of pairs 〈pktsrc, pktid〉 each identifying one data packet that x has to forward. Particularly, pktsrc

is the unique identifier of the node that generated the packet whose ID is pktid. If the number of these pairs

is > 1 then a train of data packets is transmitted back to back. We stipulate that the maximum number of

packets transmitted back to back, i.e., the length of a train, is τ ≥ 1.

A node y that receives a PING packet from node x and such that HC(y) ≤ HC(x) replies to x transmitting

a PONG packet. The PONG packet carries the following information.

PONG = 〈src, dst, pid,HC, queue, energy, lq, bit maskLpkt
, bit maskJR〉.

The fields src and dst contain the identifiers of nodes y and x, respectively. The pid parameter is that of

the received PING: The PING and PONG packets are always paired by this parameter. The field HC contains

HC(y). The field queue indicates the available buffer space at y, i.e., the number of packets that y can store

in its incoming data queue. The parameter energy indicates the residual energy available at node y. The

parameter lq is an indication of the quality of the links outgoing from y (see detailed description below).

The fields bit maskLpkt
and bit maskJR are used for handling link asymmetries, i.e., unidirectional links, as

detailed below, and interference. In particular, they report about packets already received by the sink and

by the selected relay, respectively. Upon receiving a PING packet from x, a node y executes Algorithm 1.
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Algorithm 1 UponReceivingPing(PING〈src,HC, pid, Lpkt〉) from x

1: if (HC(x) < HC(y)) then

2: drop PING

3: else

4: bit maskLpkt
← ∅

5: bit maskJR ← ∅

6: for all packet pkt ∈ Lpkt do

7: if (sink has already received pkt) then

8: Set pkt position in bit maskLpkt
to 1

9: if (I have already received pkt from x) then

10: Set pkt position in bit maskJR to 1

11: send PONG = 〈src, x, pid,HC(y), queue, energy, lq, bit maskLpkt
, bit maskJR〉

If the hop count value of node y is greater than that carried by the PING packet, y drops the PING.

Otherwise, it first checks which Lpkt data packets have been already received by the sink and sets the

bit maskLpkt
bits of the delivered packets to 1. It then checks if it has received some of the Lpkt data packets

from x, and sets the corresponding bits of bit maskJR to 1 accordingly. Finally, the PONG packet is sent to

node x.2

Relay selection happens as follows. After sending a PING, node x awaits for PONG replies from its

neighbors for a time δ. The value of δ is set to the round trip time to the farther neighbor plus the transmis-

sion delays of a PING and of a PONG packet. If x does not receive any replies from its neighbors, it keeps

sending the same PING for at most k times. After these k attempts, it increases the PING HC field to the

maximum hop count value, so that every one of its neighbors (if any) will reply with a PONG. (If, again, no

PONG is received, the data packets are dropped.) After the time δ node x executes Algorithm 2. For each

PONG received, it checks which data packets can be removed from its queue because they have been already

received by the sink (their bits in bit maskLpkt
are set to 1). Then it chooses the best relay between the nodes

2 In our implementation of CARP used in the trials at sea the PONG packet is transmitted after a time selected randomly

and uniformly in an interval whose range depends on the maximum propagation delay and on the transmission delay. This is

for reducing the probability of collisions of PONG packets. In both simulations and trials at sea, the occurrence of PONG packet

collisions was observed to be negligible, which is consistent with the distances between nodes in the selected network topologies,

and with the small size of PONG packets (7 bytes).
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Algorithm 2 UponReceivingPong(PONG〈src, dst, pid,HC, queue, energy, lq, bit maskLpkt
,

bit maskJR〉) from neighbors y

1: for all received PONGy do

2: Remove packets from Lpkt according to bit maskLpkty

3: if Lpkt , ∅ then

4: relay← chooseBestRelay() according to lqy, energyy and queuey

5: Remove packets from Lpkt according to bit maskJRrelay

6: if Lpkt , ∅ then

7: send Lpkt DATA packet(s) to relay

that replied with a PONG packet. Packets already received by the selected relay (recognized by the bits set

to 1 in the bit mask bit maskJR carried by the PONG) are removed from x queue. After this update, node x

transmits to the selected relay as many packets as the relay can get (as indicated in the field queue carried

by the PONG), if any (i.e., if Lpkt , ∅). When selecting the best relay node, for each neighbor y replying with

a PONG node x computes that neighbor goodness considering the quality lqx,y of the link from x to y, and the

quality of the best link among those from y to its neighbors z, as follows:

goodnessy = lqx,ylqy,z.

The node y with the highest goodnessy +
1

HC(y)
is chosen as relay. Nodes with a lower hop distance or

higher goodness from the sink are preferred. If there are ties, priority is given to the node with the highest

energy, and then to the node with the higher available buffer space. Further ties are broken by using the

node unique identifiers. Upon receiving a train of data packets, a node y replies with a cumulative ACK to

x (unicast), acknowledging each single packet in the train that has been received correctly. In particular:

ACK = 〈src, dst, pid,HC, bit maskLpkt
〉, where src and dst are the IDs of the ACK sender (y) and of its

destination (x), pid is the ID of the PING/PONG handshake, HC is the hop count of the sender, and the

bit mask bit maskLpkt
encodes the packets that are being acknowledged. Once an acknowledgment from y

is received, node x updates its hop count to reflect possible changes in the network topology (see details

below). When node y has received a train of one or more data packets, it checks whether it has received them

previously in order to retransmit only those that have not been sent before. In order to increase robustness,

the sink always broadcasts its acknowledgments (instead of using unicast communications as the other

nodes). As a consequence, the neighbors of the sink that are aware of the packets successfully delivered can
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inform the other nodes by piggybacking this information in the field bit maskLpkt
of their PONG packets.

Computing the link quality lq. Assessing the link quality lq is the fundamental step for computing the

goodness of the neighbors of a sender x seeking for a relay. In particular, the goodnessy of a neighbor y

of x aims at representing an estimate of the quality of the channel from x to y (lqx,y) and from y to its best

reachable neighbor z in a route to the sink (lqy,z). The quality lqy,z of the links outgoing from y is computed

by y based on the success of past transmissions to its neighbors z. It is defined as an exponential moving

average, where the weight of transmissions back in the past is less influential than that of recent ones in

assessing the goodness of the link for transmissions. This enables CARP to take into account the time

varying nature of the channel, giving more importance to recent performance. More formally, we consider

two kinds of transmissions on the channel: 1) The PING/PONG handshake, and 2) the transmission of a (train

of) data packet(s) and the corresponding ACK. For each transmission t of either kind from node y to one of

its neighbors z, node y computes:

lqty,z = αY
t
y,z + (1 − α)lqt−1

y,z . (1)

The coefficient α ∈ (0, 1) is the constant smoothing factor through which we can control how quickly

the influence of older transmissions decreases. For instance, a higher α could be used for highly variable

underwater channels, as it discounts older transmissions faster. The term Y t
y,z is the success ratio of the

tth transmission from y to z. The term lqt−1
y,z is the value of the moving average after t − 1 transmissions

from y to z. Since the definition of Equation (1) is recursive, we define lq1
y,z as the success ratio of the first

transmission. The value lq that node y transmits in its PONG packet to x is the best among the lqy,z to all its

neighbors z that could further relay the packet towards the sink, based on the (different) transmissions with

each of them. The value lqx,y used by x for computing goodnessy is determined similarly, via transmissions

from x to y.

Updating the hop count. Given the extreme variability of the underwater channel, determining the hop

count is made more dependent on the channel quality than on the actual (topology-based) hop distance from

the sink. Therefore, node x continuously monitors the links to its neighbors and sets its hop count to a value

that depends on the quality of data transmission to them. In order to implement this mechanism, each node

maintains a data structure storing Lratioi for each hop count i, where 1 ≤ i ≤ maxHC, being maxHC the

maximum possible hop distance of a node from the sink. The Lratioi is the value of the exponential moving

average of the ratio between the number of data packets acknowledged to x by each neighbor with hop count
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i and the number of packets sent by x to those nodes. A threshold is set that “filters out” all those links that

are not deemed fit for successful transmissions. Finally, x sets its hop count HC(x) to the smallest value i

such that Lratioi is above a threshold.

Handling link asymmetry. Channel dynamics can result in links that are temporarily unidirectional. These

links can affect the performance of CARP depending on whether the unidirectional link is to the sink, or to

a neighbor. Unidirectional links to the sink. Suppose that a neighbor x of the sink sends a PING to initiate

relay selection. This PING is received by all its neighbors, including the sink. Due the unidirectional link

to the sink, x cannot receive the PONG from the sink. The next hop relay will have to be another node y that

will be the recipient of the packet. The sink, however, receives the data packet correctly, even if the packet

is not directed to it. In order to keep forwarding the packet(s), node y will broadcast a PING with the id(s) of

the packet(s) it wants to transmit. At this point, the sink is able to identify that it has already received that

data packets (from x), and sets the bit maskLpkt
field of the PONG to y accordingly. As a consequence, node

y deletes the packet from its queue, avoiding its retransmission. Neighbor asymmetry. In order to avoid

unnecessary retransmissions of packets successfully received but whose ACK went lost, if a node receives

a PING referring to already received data packets, it warns the sender by using the bit maskJR of its PONG

appropriately. The bits corresponding to the packets that have been correctly received are set to one, which

allows the sender to drop them.

CARP and power control. Protocols such as CARP determine the next hop relay based on the correct

exchange of control packets. Once a neighbor has been selected as relay, the channel is reserved and

used for data transmission. However, data packets are usually considerably longer than control packets.

Therefore, what is considered an acceptable PER for control packets might result in a (too) high PER for

data packets. CARP takes advantage of modem power control, if available, to obtain similar desirable PER

for both control and data packets. The power used to transmit PING and PONG packets is computed so

to obtain the desired PER corresponding to a given channel bit error rate (BER). Once a relay has been

selected, the power for sending data packets is increased so that the corresponding PER matches that of the

PING/PONG handshake. More precisely, the transmission power P for transmitting packets at a given PER

is computed as follows. Assuming a BPSK modulation and no forward error correction, the probability

to transmit correctly a packet with l bits is equal to (1 − BER)l. The BER is computed as 1
2
erfc(

√
S NR),

where erfc() is the complementary error function. The S NR is given by
P/A(r, f )

N( f )∆ f
, where P is the required

transmission power, A(r, f ) is the attenuation in the underwater channel over a distance r for a signal of
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frequency f , N( f ) is the noise power spectral density, and ∆ f is the receiver noise bandwidth [26].

4. Performance Evaluation

The performance of CARP has been evaluated through an extensive set of simulations as well as with

experiments at sea in two very different scenarios, namely, a fjord in Norway and in the Mediterranean

coast of Italy. Simulation scenarios consider multi-hop UWSNs with desirable size (20 nodes, not currently

available at sea). We compare the performance of our protocol with that of FBR and of an enhanced version

of the common flooding protocol, termed EFlood. In the two sets of experiments at sea we have compared

CARP and EFlood in networks with up to 8 nodes.

4.1. Investigated metrics

Effectiveness and costs of delivering bits to the sink are assessed by investigating the following metrics.

• Packet delivery ratio (PDR) at the sink, defined as the ratio between the packets correctly received by the

sink and the packets generated by the nodes.

• End-to-end latency per meter, defined as the time between the packet generation and the time of its correct

delivery at the sink, divided by the distance between source and destination. Normalization by distance is

used so as to unify the performance over varying deployment areas.

• Energy per bit, i.e., the energy consumed by the network to correctly deliver a bit of data to the sink.

4.2. Simulations experiments

This section describes the simulation-based comparative performance evaluation of CARP and two other

proposed protocols for UWSN routing, namely, FBR [4] and EFlood, an enhanced version of the common

flooding protocol. The performance of common flooding, where a node immediately retransmits a received

packet (unless it is a duplicate), is enhanced by EFlood by letting a node wait for a random time before

forwarding the packet. This random time depends on the network topology and on the packet transmission

delay. Through extensive trials (both simulation-based and in-field) we have observed that EFlood remark-

ably outperforms common flooding. For instance, the packet delivery ratio increases from 5% to 60% in

network with 20 nodes and varying traffic (simulations) and from 58% to 80% in network with 8 nodes

(in-field experiments). CARP, FBR and EFlood have been implemented in SUNSET [5], our extension of

ns-2 [27] for underwater networking, connected to the Bellhop software [6] via the WOSS interface [28].
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Bellhop is used to compute acoustic path loss at a given location, as well as the spatially-varying inter-

ference induced by node transmissions. The environmental data refer to an area located in the Norwegian

fjord off the coast of Trondheim, with the coordinate (0, 0, 0) of the surface located at 63◦, 29′, 1.0752′′N

and 10◦, 32′, 46.6728′′E. Sound speed profiles (SSP), bathymetry profiles and information on the type of

bottom sediments of the selected area are obtained from the World Ocean Database [29], from the General

Bathymetric Chart of the Oceans (GEBCO) [30] and from the National Geophysical Data Center Deck41

data-base [31], respectively. The SSP is retrieved by WOSS from the World Ocean Database (average of

measurements from September 2009).

Simulation scenarios and settings. Our simulations concern UWSNs with 20 nodes (19 nodes plus the sink)

statically placed in a region with surface 1km × 2km. Sensor nodes are placed randomly and uniformly in

the region at different depths, ranging from 10 to 240m. Each packet that makes it to the sink travels an

average of 1.8 hops (the maximum number of hops is 4). The data packet payload size (in bytes) varies in

the set {100, 512, 1000}. The carrier frequency is 25.6kHz for a bandwidth of 4000Hz. Bandwidth efficiency

is set to 1bps/Hz. Since we selected a modem transmission rate of 4000bps, the transmission time of the

three packet sizes of 100B, 512B and 1000B is smaller than, comparable to, and bigger than maximum

propagation delay, respectively.3 We assume BPSK modulation. Topology construction ensures that each

node has at least one route to the sink going through robust links (with respect to SNR). For the selected

value of the bandwidth and of the carrier frequency the transmission power is set to 2.8W, resulting in

an average BER of 10−6 on the routes. Reception and transmission power were estimated based on the

energy consumption of existing acoustic modems. In order to have similar PERs for control packets and

data packets, CARP control packets are transmitted with a transmission power of 1.5W. The FBR protocol

uses 3 levels of transmission power corresponding to 2.8W, 8W, and 35W. Traffic is generated according to a

Poisson process with aggregate (network-wide) rate of λ packets per second, where λ takes values in the set

{0.002, 0.004, 0.008, 0.012, 0.016, 0.02, 0.04, 0.0666, 0.1}. Once a packet is generated, it is associated with

a source selected randomly among all nodes (except the sink). The destination of all packets is the sink. The

total size of a data packet is given by the selected payloads plus the headers added by the different layers.

The physical layer header contains all the information needed by the modem to correctly start receiving

a packet (synchronization preamble, delimiters, etc.). At the physical layer, nodes need about 10ms for

synchronization (the physical header overhead changes according to the data rate). EFlood uses CSMA

3 The maximum propagation delay is the time it takes a bit to travel a distance equals to the modem nominal transmission range.
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MAC protocol without ACKs. The CSMA header contains the sender and the destination addresses, and the

packet type. Its length is 3B. The RTS and CTS packets used by FBR are 6B long; its ACK and WARNING

packets are 3B long. The size of PING and PONG packets is 11B and 7B, respectively; the ACK packets used

by CARP are 6B long, while its HELLO packets are 6B long. The CARP MAC header is 4B long. Finally,

the smoothing factor α used for computing CARP link quality has been set to 0.9.

Simulation results: Packet delivery ratio. Figure 1 shows the packet delivery ratio of the three protocols

for increasing traffic λ and for three different packet payloads.
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Figure 1: Packet delivery ratio.

As expected, for increasing traffic and packet sizes the packet delivery ratio decreases. Higher traffic

increases the probability of packet collisions and retransmissions and, as a consequence, the probability of

finding the channel busy. Moreover, when the packet size increases the probability of collision becomes

higher because of the decreasing ratio between the transmission and propagation delays. CARP clearly out-

performs FBR and EFlood because of its link quality-based relay selection and because data are forwarded

on links that are robust for both control and data packets. This substantially reduces the number of colli-

sions, with the consequence that a higher number of data packets reaches the sink successfully irrespective

of the length of the routes they travel. The packet delivery ratio of FBR drops faster than that of CARP

for increasing traffic and packet sizes. This is because 1) FBR does not transmit trains of data packets to

reduce the handshaking overhead; 2) FBR uses the same power level for both control and data packets, and

3) FBR selects relays only if they provide positive advancement towards the sink, and as such suffers from

the problem of not being able to route around connectivity holes. EFlood shows the worst performance,

suffering from congestion and lack of retransmissions.

Simulation results: End-to-end latency per meter. The average latency per meter experienced by data
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packets successfully delivered to the sink is shown in Figure 2.
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Figure 2: Data packet latency per meter.

Increasing the traffic induces degraded performance, as expected. This happens even if the average

number of hops traveled by each packet stays relatively stable. Each hop imposes longer delays because

of the increased number of collisions and retransmissions. EFlood shows the best latency per meter perfor-

mance because of its ability of delivering packets on multiple routes and the absence of the handshake phase.

CARP outperforms FBR because of its link quality-based relay selection and of the use of robust links for

control and data transmissions, which keep retransmissions at bay. Moreover, CARP transmits trains of

data packets whenever possible, thus reducing the handshake overhead of the relay selection phase. The

performance of FBR is beset by the many times a node has to increase its power to find a suitable relay.

We observe that, however, increasing transmission power allows nodes to select farther relays, i.e., nodes

that provide higher advancements toward to the sink. This explains why the average lengths of FBR routes

decreases as the number of power increments increases. In particular, the average length of FBR routes is

up to 16% (21%) shorter than that of CARP (EFlood).

Simulation results: Energy per bit. Our final set of simulations concerns the energy spent for delivering

one bit of data to the sink correctly. Results are shown in Figure 3.

We consider the energy spent for transmitting and receiving a bit of data in networks with nodes

equipped with “wake up modems,” where idling effects are almost negligible.4 We observe that the en-

ergy consumed per bit decreases for increasing packet sizes. This is because, despite the lower packet

4 Since idling is a major culprit of energy expenditure, especially at low traffic, recent commercial transducers feature “wake

up” capabilities. Modems are now built with very low power devices capable of alerting a node of upcoming transmissions.

Considerable results are being seen for terrestrial radio nodes [32, 33], and similar research is ongoing for underwater modems.

For instance, Teledyne Benthos [34] and Evologics [35] modems feature low power wake up.
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Figure 3: Energy per bit.

delivery ratio of larger packets, the total number of bits delivered to the sink is still higher than when a

greater number of smaller packets is delivered. CARP saves more energy per bit than FBR and EFlood.

Its energy per bit remains stable, independently of increasing traffic. This is due to the fact that CARP

uses a lower power level for control packet transmissions. Furthermore, CARP delivers more data to the

sink, and reduces the number of packet collisions and retransmissions. FBR energy per bit increases with

traffic because nodes experience a higher number of retransmissions, each time with a higher transmission

power. The energy per data bit of EFlood decreases with increasing traffic. This is due to the lower number

of data packets correctly received and broadcast by each node (remember that EFlood does not perform

retransmissions).

4.3. Experiments at sea

We have evaluated the performance of CARP through experiments at sea at two different geographic

locations with diverse underwater characteristics. Our results refer to two campaigns of experiments per-

formed in the Norwegian fjord of Trondheim in May 2013 and off the coast of the Palmaria island (La

Spezia, Italy) in September 2013. In both locations we used modems that do not feature power control

with the fine granularity required by CARP. Therefore, the experiments were all performed using the same

transmission power level for control and data packets. In the campaigns of experiments at sea we have also

collected information on the length of the routes traveled by data packets from their source node to the sink.

What reported in the tables below is the average length of the routes of all packets successfully delivered to

the sink.
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4.3.1. Trondheim experiments

For this set of experiments we deployed six Kongsberg cNODE acoustic modems [36] to mimic a real

application scenario of pipeline and oil well monitoring. Four nodes were placed at depths varying from 170

to 190 meters along the pipeline and in the oil well area (nodes with ID 2, 3, 4 and 5). One was connected to

a surface station (buoy) at a depth of about 10 meters and acted as a gateway to the control station on shore

(node 1, the sink). One modem was deployed on the side of the boat Gunnerus at a depth of 15 meters (node

6) acting as mobile node for monitoring along the pipeline (Scenario 1, Figure 4a) and in the oil well area

(Scenario 2, Figure 4b). Data were generated at the nodes by a CO2 Probe performing CO2 and temperature

monitoring [37]. They were delivered to the sink in real time and forwarded to the operator on shore. In

(a) Scenario 1. (b) Scenario 2.

Figure 4: Network topologies for pipeline and oil well monitoring.

both scenarios, nodes with ID 4, 5 and 6 were selected as data sources. Traffic was generated according

to a constant bit rate (CBR) process. In particular, each data source generated one packet every 60s. All

other nodes were used as relays. Among the transmission formats (packet size, bit rate and modulation)

provided by the Kongsberg nodes, we selected the best fit for the harsh fjord channel. This format supports

a maximal packet size of 48B and a bit rate of 200bps. In fact, in order to reduce PER and transmission

delays, we used a packet size of 24B. Finally, we selected the lowest transmission power level provided by

the cNODE, namely, 173dB re 1µPa, which corresponds to 3.3W.

Multi-hop communications were obtained by implementing “node blacklisting” in software. In particu-

lar, we configured nodes 1 and 6 (labeled BL in the following) so that they drop packets received from each

other. This made node 6 a critical source node, which communicates data to the sink through a route at least
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two hops long. The two test scenarios differ in the relative position of node 6, which impacts link quality. In

Scenario 1, the node on the Gunnerus was anchored along the pipeline at a central position 655m away from

the sink. In Scenario 2, node 6 was anchored to the oil well, 1500m away from the sink. Scenario 1 lasted

1240s during which 57 packets were generated. Scenario 2 was run for 1330s, with 66 packets. Results of

our experiments are shown in Table 1.

Metric Results

Packet delivery ratio [%] 82

Latency per meter [s/m] 0.08

Route length [hops] 1.3

Energy per bit [J/b] 0.087

(a) Scenario 1.

Metric Results

Packet delivery ratio [%] 89

Latency per meter [s/m] 0.04

Route length [hops] 1.32

Energy per bit [J/b] 0.088

(b) Scenario 2.

Table 1: Trondheim tests.

Packet delivery ratio. CARP always achieves an average packet delivery ratio greater than 80%. This is

because of its link quality-based relay selection and of its feature that allows to transmit trains of multiple

packets within a single handshake. We have also observed that the CARP mechanism for handling unidi-

rectional links prevented unnecessary retransmissions of both control and data packets, enhancing packet

delivery ratio because of lower network congestion.

End-to-end latency per meter. Packets travel an average of 1.3 hops to get to the sink. Despite the limited

route length, packet latency can however be high.5 The average time it takes a packet to reach the sink

exceeds 80s in the first scenario, resulting in a latency per meter of 0.08m/s. In the second scenario packets

travel faster, averaging 55s to reach the sink (with a latency per meter of 0.04m/s). The reason is to be found

in the poor link quality of the fjord channel, where links are asymmetric and unstable, significantly varying

in time and space. This is clearly shown in Table 2 that reports the percentage of PING packets successfully

delivered per link. Many links are low quality. This is because, in the harsh channel condition typical of

these scenarios, handshake-based protocols are more prone to suffer from a quickly varying links. In order

to complete the handshake, these protocols need links that are stable and bidirectional. In this case, several

5 Timeout settings for CARP were conservative, since this was the first CARP test at sea with a quite large number of devices.

These settings have been more finely tuned for the CommsNet13 experiments thanks to the lessons learned in Trondheim.
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1 2 3 4 5 6

1 - 75% 75% 38% 77% BL

2 53% - 0% 40% 0% 53%

3 100% 28% - 0% 85% 100%

4 53% 39% 0% - 65% 34%

5 63% 2% 68% 61% - 66%

6 BL 63% 61% 55% 52% -

(a) Scenario 1.

1 2 3 4 5 6

1 - 40% 42% 50% 67% BL

2 100% - 0% 83% 0% 0%

3 66% 11% - 0% 72% 77%

4 52% 52% 0% - 54% 67%

5 82% 23% 76% 54% - 61%

6 BL 48% 71% 71% 71% -

(b) Scenario 2.

Table 2: Link quality. Entry (i, j) is the percentage of PINGs successfully transmitted from i to j.

control packets were sent for completing one data transmission successful, which impacted performance,

and especially latency, detrimentally. In particular, the average number of PING packets needed for one

successful data transmission in the first scenario is 3.3. This value drops to 2.7 in the second scenario, and

explains the lower average latency per meter in that case.

Energy per bit. We computed the energy per bit using the values for energy transmission and reception

from the Kongsberg cNode data sheet. In particular, the power needed to transmit a bit is 3.3W and that for

receiving a bit is 0.620W. CARP requires low energy per bit. This is because each successful handshake

results in the transmission of a train of multiple data packets, which increases channel utilization. Fur-

thermore, the mechanism used by CARP to handle unidirectional links significantly decreases unnecessary

retransmissions, which has a beneficial effect on energy consumption.

4.3.2. CommsNet 13

The CommsNet13 experiments have been conducted from September 9 to September 22, 2013 off the

coast of the Palmaria island, in the South-West part of the gulf of La Spezia, Italy. The experiments were

performed through a collaboration agreement between the University of Roma “La Sapienza” and the NATO

Science and Technology Organization Centre for Maritime Research and Experimentation (STO CMRE).

Twelve nodes, static and mobile, were deployed as shown in Figure 5a.

Configuration was as follows.

• LOON. The Littoral Ocean Observatory Network, consisting of 4 bottom-mounted tripods with

acoustic modems. The four nodes were cabled to shore and connectivity and power were provided by
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(a) CommsNet13 area and nodes. (b) Network configuration used.

Figure 5: Setting of the CommsNet13 experiments.

a fiber optic cable (nodes with IDs 1 through 4). A PC on the shore station was used to control the

modem operations.

• Gateway. One gateway communication buoy, temporarily moored with recoverable mooring tackle

(node 5).

• Alliance. The NATO Research Vessel Alliance working as a static node with a Manta system [38]

connected to a modem deployed on the side (node 6).

• WaveGlider. One WaveGlider autonomous surface vehicle (named Carol) with gateway communi-

cation payload (node 9).

• eFolaga. Three eFolagas [39] Autonomous Underwater Vehicles (AUVs) with communication pay-

load (IGEPv2 board). The eFolagas were used as static nodes, moored for overnight tests (nodes 7, 8

and 10).

• Manta. We used Manta portable systems [38] for additional modems, deploying them from Rigid-

Hulled Inflatable Boats (RHIBs) to increase the scale of the network temporarily (nodes 11 and 12).

All nodes were equipped with Evologics S2CR 18/34 acoustic modems. The site where the underwater

network was deployed is a broad plateau approximately 30m under sea surface. It is located along the
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major current direction between potential sources of pollution to the South and the marine protected areas

to the North. Therefore, the position of the network is ideal for environmental monitoring applications.

These applications may include sensing for measuring ship traffic, especially in restricted areas, assessing

the presence and amount of chlorophyll and blue-green algae (indicators of eutrophication and toxic algae

blooms), conductivity and temperature (to investigate water stratification and movements), dissolved O2

(for water quality), and water clarity (for suspended sediments and algae formation). The seabed in this

area is predominantly mud.

The performance of CARP and EFlood have been compared considering two different setups (referred

below as Experiment 1 and Experiment 2) where 8 nodes were statically deployed as depicted in Figure 5b.

Node 1 was designated as the sink, while nodes 3, 4 and 8 were used as data sources. The remaining

nodes acted as relays to the sink. Traffic generation is CBR. In particular, in Experiment 1 a packet was

generated by each source node every 60s. In Experiment 2 we considered a higher traffic, where a packet

was generated every 30s by each data source. The duration of Experiment 1 and 2 was 2000s and 1300s,

respectively. The packet size was 50B. We used the maximum bit rate offered by the Evologics S2CR

18/34 acoustic modem, namely, 480bps, which allows us to bypass the in-house MAC mechanism and to

use those implemented by CARP and EFlood.6 All experiments were performed at the lowest transmission

power level, resulting in a power consumption for transmissions of 2.8W. Power consumption for reception

was 0.5W.

Results are shown in Table 3.

Metric CARP EFlood

Packet delivery ratio [%] 96 96

Latency per meter [s/m] 0.038 0.009

Route length [hops] 1.35 1.6

Energy per bit [J/b] 0.03 0.049

(a) Experiment 1.

Metric CARP EFlood

Packet delivery ratio [%] 95 87

Latency per meter [s/m] 0.054 0.01

Route length [hops] 1.36 1.4

Energy per bit [J/b] 0.027 0.040

(b) Experiment 2.

Table 3: CommsNet13 experiment results.

6 This is the fixed bit rate provided by the modem when transmitting “Instant Messages,” i.e., the Evologics modem form for

direct communication through which we transmitted the control and data packets of our protocols.
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Packet delivery ratio. When the traffic is low, CARP and EFlood show the same PDR. When traffic

increases reserving the channel becomes more challenging and both protocols show lower PDR and longer

latencies. This is mainly due to the larger number of packet collisions and to the fact that the channel is

found busy more often. Moreover, during Experiment 2 the network became temporary disconnected several

times during the tests. In particular, we have estimated that the network disconnections prevented node 8

to correctly deliver 48% (29%) of the data packets for CARP (EFlood) at the first transmission attempt.

These temporary disconnections are the main reason of the lower PDR obtained by EFlood with respect

to that of CARP. EFlood does not implement any notification mechanism to check if a packet has been

correctly delivered. All the packets transmitted by node 8 during the disconnection periods are therefore

lost. CARP instead, thanks to the use of handshaking and ACKs, performs retransmissions, thus increasing

the probability of delivering a packet.

End-to-end latency per meter. EFlood incurs a latency per meter lower than that of CARP. In particular,
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Figure 6: CARP: End-to-end latency distribution for traffic sources.

in Experiment 1 the average time it takes to deliver a packet to the sink is 9s for EFlood and 37s for CARP,

resulting in a latency per meter of 0.009m/s and 0.038m/s, respectively. Similarly, in Experiment 2 the

packet delivery time is an average of 10s (0.01m/s) for EFlood and of 50s (0.054m/s) for CARP. EFlood

incurs very low latencies per meter because it does not use control packets for channel access. It just

experiences a limited delay due to the random time that a node waits before forwarding a packet. CARP,

instead, pays the price of using handshaking and ACKs. Figure 6 shows the distribution of the latency of

CARP packets from the three source nodes in the two experiments. We observe a higher latency for packets
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from node 8 in Experiment 2 than in Experiment 1. This is due to the frequent disconnections of node 8.

We observe that without considering packets from this node, CARP would show similar latency values in

both experiments.

Energy per bit. CARP consumes less energy per delivered data bit than EFlood. In particular, the

energy per bit of EFlood is 63% (48%) higher than that of CARP in Experiment 1 (Experiment 2). This

is because of the flooding nature of EFlood where packets are frequently duplicated in the network. This

increases interference, retransmissions, and redundant delivery, all of which require more energy. CARP,

instead, is a single-path protocol that selects relays based on link quality and hop count, which limits

data retransmissions. Moreover, CARP reduces energy per bit thanks to: 1) The use of trains of packets

that limits the number of handshakes, and 2) the use of an handshaking mechanism enhanced to handle

unidirectional links and to decrease retransmissions of data packets in case of ACK losses. We observe

that the energy per bit of Experiment 2 is lower than that of Experiment 1 for both CARP and EFlood

(Table 3). This is once again due to the temporary disconnections of node 8. During these times, nodes do

not receive and forwards packets from this node. As a consequence, the energy per bit is lower. This is more

pronounced for EFlood than for CARP. When using EFlood 29% of the packet generated by node 8 are not

forwarded by any of the nodes in the network. In the case of CARP, when node 8 is disconnected it sends

a large number of PING packets in the (inane) attempt of finding a relay. We notice, however, that during

the disconnections node 8 accumulates the packets it generates. When the link comes back up and a relay

is finally found, trains of data packets are transmitted back to back, which is a source of energy saving. In

other word, the energy spent for a larger number of PING transmissions is offset by the savings of longer

trains of packets. (The number of trains with more than one packet in Experiment 2 was observed to be

50% higher than that of Experiment 1. Furthermore, the average number of packets per train in the second

experiment is 40% higher than that in the first one.)

5. Conclusions

In this paper we presented CARP, an efficient new routing protocol for UWSNs. CARP is designed ac-

cording to the cross-layer design paradigm, in that it efficiently uses short control messages to perform joint

channel access and relay selection. In particular, data forwarding exploits link quality information, leading

to the selection of nodes that exhibit a history of successful transmissions towards the sink. CARP also im-

plements simple mechanisms to effectively avoid loops, route around connectivity voids and shadow zones.
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It also takes advantage of modem power control, if available, for selecting robust links. The effectiveness

of CARP in delivering packets in reasonable time and with low energy demands is shown by simulations

in networks with desirable size and through experiments at sea on real multi-hop UWSNs. Different packet

sizes and ratios between transmission and propagation delays have been considered in our performance

evaluation. Our results show that CARP robust mechanism for relay selection doubles the packet delivery

ratio of two other routing protocols, namely, FBR and EFlood. CARP also outperforms FBR and EFlood in

terms of energy consumption, and delivers packets significantly faster than FBR.
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